Content

Tutorial 3 ---Chan Ki Fung

BACK

Questions of today

- 1. (supplement to the proof of Jense formula in the lecture note). Let Ω be a simply connected open subset of \mathbb{C} . Suppose $f: \Omega \to \mathbb{C}$ is a nowhere zero holomorphic function, show that there exits a holomorphic function $g: \Omega \to \mathbb{C}$ such that $f = e^g (\log f \text{ exists})$
- 2. Let $f : \mathbb{C} \to \mathbb{C}$ is an entire function, and let n be an integer. Show that there exits an entire $g : \Omega \to \mathbb{C}$ such that $f = g^n$ if and only if the orders of zeros are divisible by n.
- 3. Let f be holomorphic in a region which contains $\overline{D_R}$, and let a_1, a_2, \ldots, a_n be the nonzero zeroes of f in D_R . If |z| < R, show that if f has a zero at z = 0 with multiplicity m then

$$\log \left|rac{f^{(m)}(0)}{m!}
ight| + m\log R = -\sum_{k=1}^n \log \left(rac{R}{|a_k|}
ight) + rac{1}{2\pi}\int_0^{2\pi} \log |f(Re^{i heta})|d heta$$

4. (Poisson integral formula) Let f=u+iv be holomorphic in a region which contains $\overline{D_R}$, and let $z\in D_R.$ Show that

$$f(z) = rac{1}{2\pi} \int_{0}^{2\pi} \mathrm{Re}igg(rac{Re^{i heta}+z}{Re^{i heta}-z}igg) f(re^{i heta}) d heta.$$

Note that by taking real part of the formula, we have

$$u(z) = rac{1}{2\pi} \int_{0}^{2\pi} {
m Re}igg(rac{Re^{i heta}+z}{Re^{i heta}-z}igg) u(re^{i heta}) d heta.$$

5. (Poisson-Jensen Formula) Let f be holomorphic in a region which contains $\overline{D_R}$, and let a_1, a_2, \ldots, a_n be the zeroes of f in D_R . If |z| < R, and $f(z) \neq 0$, show that

$$\log |f(z)| = -\sum_{k=1}^n \log \left|rac{R^2 - \overline{a_k}z}{R(z-a_k)}
ight| + rac{1}{2\pi}\int_0^{2\pi} \mathrm{Re}igg(rac{Re^{i heta} + z}{Re^{i heta} - z}igg) \log |f(Re^{i heta})| d heta$$

Hints & solutions of today

- 1. (See page 100 of textbook for more details)First fix a point $a \in \Omega$, and define g(z) to be the integral of $d \log f = \frac{f'dz}{f}$ over a curve from a to z. You then
 - 1. Check g is well-defined.
 - 2. Check g is holomorphic.
 - 3. Check that $f \exp(-g)$ is a constant.
 - 4. Modify g to make the constant in (iii) become 1.

Remark: The nonvanishing of f is used to make sure $d \log f$ is well-defined.

2. The "only if part" is obvious. For the "if part", it would be easy if $f\equiv 0$. So we may assume $f
ot\equiv 0$. Fix $a\in\mathbb{C}$ with f(a)
ot=0. Define g by

$$g(z)=\exp{\left(rac{1}{n}\int_{\gamma_z}rac{f'(z)dz}{f}
ight)},$$

where γ_z is a curve from a to z that does not pass through any of the zeroes of f. As in question 1, we

- 1. Check g is well-defined outside the zeroes of f. (By using Argument principle this time, note that the integral without the exponential is not defined)
- 2. Check g is holomorphic outside the zeroes of f.
- 3. Check that fg^{-n} is a constant outside the zeroes of f.
- 4. Modify g to make the constant in (iii) become 1.
- 5. Using Riemann extension theorem to show that g in fact extends to the whole \mathbb{C} .
- 3. Write $f = z^m g$ with $g(0) \neq 0$, then apply the Jensen formula for g.
- 4. We let $w = Re^{i\theta}$, and write out the following

$$2\mathrm{Re}igg(rac{Re^{i heta}+z}{Re^{i heta}-z}igg) = rac{w+z}{w-z} + rac{ar w+ar z}{ar w-ar z}
onumber \ = rac{w+z}{w-z} + rac{R^2+ar zw}{R^2-ar zw}$$

Note that this expression has a zero at w = 0, and a simple pole at w = z. On the other hand, we have

$$rac{1}{2\pi}d heta=rac{1}{2\pi i}rac{dw}{w}$$

The rest is to apply residue theorem.

5. Define

$$g(z)=f(z)\prod_{k=1}^nrac{R^2-\overline{a_k}z}{R(z-a_k)}$$

Show that

- 1. $\lg(z) = \lg(z)$ when |z| = R.
- 2. Since g has no zeroes in D_R , $\log g$ exists on D_R by question 1.
- 3. Apply question 4 for u being the real part of $\log g$.

